Tag Archive for 4/20mA

How Two Wire Transmitters Work

TWO WIRE TRANSMITTERS  A POWERFUL TOOL

Two wire transmitters are one of the most used electronic instruments in the process industries.

Their flexibility and accuracy of measurements makes them the instrument of choice in many applications.

How They Work

A two wire transmitter is an electronic circuit which is designed to run on less than 4mA of current.

A Zero adjustment makes the circuit draw exactly 4.00mA when the measured signal is at its Zero Scale level.

The circuit will make the current rise to exactly 20.00mA when the measured signal rises to its Full Scale level.

The current drawn from the power supply is constant and is not dependent on the power supply voltage. This feature allows the desired signal to be read anywhere the power supply wire lead can be opened and a small resistor put in series with the lead. The voltage drop across the resistor is an accurate indication of the measured signal.

The constant current can drive total load resistors until the voltage dropped by the loads equals the saturation voltage of the Transmitter output circuit.  The compliance of the Transmitter is determined by the design of the circuits.

The universal standard of having the current go from 4.00mA to 20.00mA allows the two wire TX to be used anywhere in the world. A multitude of products exist which accept the 4.00mA to 20.00mA signal as an input signal.

One of the two major advantages of the 2 wire TX is the distance from the sensor to the signal conditioning circuit can be extremely short. This is a great advantage for thermocouple measurements. Often, the 2 wire TX is mounted on the TC sensor and no extra thermocouple wire is needed.

RTD sensors can often be 2 leads instead of 3 or 4 leads, because the 2 wire TX can be mounted on the sensor.

Where small signal levels are encountered, such as strain gauges, short wiring from the sensor to the 2 wire TX helps keep noise off the signal leads.

The other great advantage is the power supply leads for the 2 wire TX can be 1000’s of feet long and the lead can be opened anywhere so the signal can be read. Also since the signal is a constant current, the resistance of the power supply leads does not affect the output signal level.

Loop Powered Displays exist which can indicate the current in the wiring loop. The displays require very little current to operate. They usually have adjustments so the indication can be in the desired engineering units instead of just mA.

Modern technology has made 2 wire transmitters easier to design. Amplifiers are available which require only 10 microamps of current to fuction. These allow some complex circuits to be developed and function on less than 4mA. It expands the range of 2 wire TX’s which can be developed.

Wilkerson Instrument offers the following two wire instrumentation products

The SR Series Two Wire Transmitters offer inputs for DC , RTD, Thermocouple, Frequency, and Potentiometer Position

SR Series Two Wire Transmitter

SR Series Two Wire Transmitter

in a 50 mm Case size for DIN connection heads, flat panel or DIN rail mounting. Plug In range cards offer the ability to change ranges in the field. Some models offer galvanic input to output isolation.

TW303 Two-Wire Transmitter

TW303 – Specifications and I/O manual

The TW SeriesTwo Wire Transmitters offer an economic solution for applications requiring low cost transmitters for Potentiometer, RTD, Thermocouple, and Frequency inputs.

The SC Series Two Wire Transmitters feature universal temperature sensor inputs programmable via an onboard keypad or by remote RS232 interface. Linearization for thermocouple types J,K,T,R,S,E, and N is provided as well as inputs for 2, 3 and 4 wire Platinum RTDs.

SC 5010 Two Wire Transmitter

SC 5010 Two Wire Transmitter

The SC5010 Two Wire Transmitter also features a 4 1/2 digit digital display and galvanic input to output isolation.

 

 

 

 

Solutions provider for signal conditioning and process control instrumentation – Wilkerson Instrument Company Inc

Differential Pressure Measurement Across Liquid Filters in a Beverage Processing Plant

DIFFERENTIAL PRESSURE MEASUREMENT ACROSS LIQUID FILTERS IN A BEVERAGE PROCESSING PLANT

SYSTEM REQUIREMENT:

Measure the pressure drop across each filter in a bank of filters to determine when to switch to a fresh filter(s) so the clogged one(s) can be cleaned.

Provide electrical isolation between each input signal as well as between input to output to prevent noise pickup and noise from ground loops.

Wilkerson  Instrument Co. Products Used

 

Mighty Module Wilkerson Instrument

Mighty Module

 

Mighty Module Wilkerson Instrument

Mighty Module

 

LP400 Loop Power Display

MM4408 MM4300 LP4OO
TWO-INPUT ISOLATED DC DIFFERENCE TRANSMITTER (OUTPUT = A – B) ISOLATED SIGNAL CONDITIONER LOOP POWERED DISPLAY
Specification PDF Specification PDF Specification PDF
I/O Manual PDF I/O Manual PDF I/O Manual PDF
How To Order How To Order How To Order

 

SYSTEM SYNOPSIS

Many beverage processing plants utilize filters at various stages of the process to remove unwanted materials from the liquid. As these filters load up doing their job, the flow passing through the filter is reduced. If the filters are not replaced or cleaned, the flow can be impeded enough to disrupt the total process.

This particular application surfaced when the customer was faced with replacing an old pneumatic system. The customer wanted to install an electronic system using strictly “off-the-shelf” commercially available equipment. He was faced with very limited control panel space and limited budget. Therefore, the system must use the fewest components possible and the smallest displays available.

The Fluid Flow Diagram shows the basic arrangement of the pressure transducers and the filters. Only one prefilter and one two-stage filter are in service at any given time.

 

Fluid Flow Diagram - Bottling Plant

Fluid Flow Diagram - Bottling Plant

 

This allows the other filter(s) to be cleaned, sterilized and made ready for service.

USDA approved pressure transducers that are cleaned and sterilized in place were selected. By placing transducers 1, 2 and 5 so their use is common to either prefilter and either filter bank in use, the customer needed only five pressure transducers to do the job.

The Signal Flow Diagram shows how the customer’s judicious use of a switch, two MM4300 DC to DC transmitters, and three MM4408 difference transmitters achieves the needed input to input and input to output signal isolation with only five modules.

Signal Flow Diagram

Signal Flow Diagram

SOLUTION

The product chosen to measure the differential pressure (pressure drop) across the filter was the MM4408 and the MM4300.

The MM4408 inputs are not isolated from each other, but the output is isolated from both inputs.

The MM4300 signal conditioner has isolation from the input to output.  It is used to provide one input to the MM4408. This provides isolation for both inputs.

Three LP400 loop powered displays in series with the three 4/20mA outputs provides an indication of the pressure on the output of the filters.  The Display can be calibrated in engineering units to fit the need.

Wilkerson Instrument Company Inc Is a solutions provider for signal conditioning and process control instrumentation  –   Copyright 2012

 

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: